research

Desain dan Pengembangan Sistem Kecerdasan Robotika Muatan Roket dengan 5 Derajat Kebebasan dengan Kontrol Sistem Pendaratan Navigasi X-Y Kartesian

Abstract

In this study a design and manufacture a rocket payload system that has the ability to fly autonomously intelligently is discussed. The rocket payload system was designed to be able to return to the landing position. This system consists of two sub systems, namely rocket payload and host computer (ground segment). A robotic-based rocket payload has a CPU-based system controller with a specific I/O for sensor-actuator is equipped with a set of telemetry systems. The I/O data can be sent to the host computer at the ground segment. Host computer with the ground segment is a useful tool to receive data from a rocket payload telemetry or navigation data which is then processed by a computer in the form of tables, graphs and map navigation. Direction control systems used for rocket payload system is fuzzy logic control with the input of compass and GPS data and the output scale propeller actuation to the system used by rocket payload. Testing of control systems was conducted in laboratory scale. Input is data of the desired setpoint with output in PWM DC Motor form to stabilize the rocket payload. The test results obtained for this direction control system to minimize the ∆error value of the set point desired direction so that the error is almost close to zer

    Similar works