A literal Liapunov stability analysis of a spacecraft with flexible appendages often requires a division of the associated dynamic potential into as many dependent parts as the number of appendages. First part of this paper exposes the stringency in the stability criteria introduced by such a division and shows it to be removable by a “reunion policy.” The policy enjoins the analyst to piece together the sets of criteria for each part. Employing reunion the paper then compares four methods of the Liapunov stability analysis of hybrid dynamical systems illustrated by an inertially coupled, damped, gravity stabilized, elastic spacecraft with four gravity booms having tip masses and a damper rod, all skewed to the orbital plane. The four methods are the method of test density function, assumed modes, and two and one-integral coordinates. Superiority of one-integral coordinate approach is established here. The design plots demonstrate how elastic effects delimit the satellite boom length