Topology design of stpuctures subjected to periodic loading

Abstract

Although a lot of attention in the topology optimization literature has focused on the optimization of eigenfrequencies in free vibration problems, relatively little work has been done on the optimization of structures subjected to periodic loading. In this paper, we propose two measures, one global and the other local, for the minimization of vibrations of structures subjected to periodic loading. The global measure which we term as the “dynamic compliance” reduces the vibrations in an overall sense, and thus has important implications from the viewpoint of reducing the noise radiated from a structure, while the local measure reduces the vibrations at a user-defined point. Both measures bring about a reduction in the vibration level by moving the natural frequencies which contribute most significantly to the measures, away from the driving frequencies, although, as expected, in different ways. Quite surprisingly, the structure of the dynamic compliance optimization problem turns out to be very similar to the structure of the static compliance optimization problem. The availability of analytical sensitivities results in an efficient algorithm for both measures. We show the effectiveness of the measures by presenting some numerical examples

    Similar works