research

Targeted interplay between bacterial pathogens and host autophagy

Abstract

Due to the critical role played by autophagy in pathogen clearance, pathogens have developed diverse strategies to subvert autophagy. Despite previous key findings of bacteria-autophagy interplay, a systems level insight into selective targeting by the host and autophagy modulation by the pathogens is lacking. We predicted potential interactions between human autophagy proteins and effector proteins from 56 pathogenic bacterial species by identifying bacterial proteins predicted to have recognition motifs for selective autophagy receptors p62/NDP52 and LC3. Conversely, using structure-based interaction prediction methods, we identified bacterial effector proteins that could putatively modify core autophagy components. Our analysis revealed that autophagy receptors in general potentially target mostly genus specific proteins, and not those present in multiple genera. We also show that the complementarity between the predicted p62 and NDP52 targets, which has been shown for Salmonella, Listeria and Shigella, could be observed across other pathogens. Using literature evidence, we hypothesize that this complementarity potentially leave the host more susceptible to chronic infections upon the mutation of one of the autophagy receptors. To check any bias caused by our pathogenic protein selection criteria, control analysis using proteins derived from entero-toxigenic and non-toxigenic Bacillus outer membrane vesicles indicated that autophagy targets pathogenic proteins rather than non-pathogenic ones. We also observed a pathogen specific pattern as to which autophagy phase could be modulated by specific genera. We found intriguing examples of bacterial proteins which could modulate autophagy, and in turn capable of being targeted by the autophagy receptors and LC3 as a host defence mechanism. To demonstrate the validity of our predictions, we confirmed experimentally with in vitro Salmonella invasion assays the bi-directional interactions underlying the interplay between a Salmonella protease, YhjJ and autophagy. Our comparative meta-analysis points out key commonalities and differences in how pathogens could affect autophagy and how autophagy potentially recognises these pathogenic effectors

    Similar works