CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
The Epithelial Sodium Channel (ENaC) Establishes a Trafficking Vesicle Pool Responsible for Its Regulation
Authors
Carol A. Bertrand
Christine Rondandino
+5 more
Gerard A. Apodaca
Jeff M. Sands
John P. Johnson
Michael B. Butterworth
Robert S. Edinger
Publication date
28 September 2012
Publisher
'Public Library of Science (PLoS)'
Doi
Cite
View
on
PubMed
Abstract
The epithelial sodium channel (ENaC) is the rate-limiting step for sodium reabsorption across tight epithelia. Cyclic-AMP (cAMP) stimulation promotes ENaC trafficking to the apical surface to increase channel number and transcellular Na+ transport. Removal of corticosteroid supplementation in a cultured cortical collecting duct cell line reduced ENaC expression. Concurrently, the number of vesicles trafficked in response to cAMP stimulation, as measured by a change in membrane capacitance, also decreased. Stimulation with aldosterone restored both the basal and cAMP-stimulated ENaC activity and increased the number of exocytosed vesicles. Knocking down ENaC directly decreased both the cAMP-stimulated short-circuit current and capacitance response in the presence of aldosterone. However, constitutive apical recycling of the Immunoglobulin A receptor was unaffected by alterations in ENaC expression or trafficking. Fischer Rat Thyroid cells, transfected with α,β,γ-mENaC had a significantly greater membrane capacitance response to cAMP stimulation compared to non-ENaC controls. Finally, immunofluorescent labeling and quantitation revealed a smaller number of vesicles in cells where ENaC expression was reduced. These findings indicate that ENaC is not a passive passenger in regulated epithelial vesicle trafficking, but plays a role in establishing and maintaining the pool of vesicles that respond to cAMP stimulation. © 2012 Edinger et al
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1371%2Fjournal.pon...
Last time updated on 04/03/2024
The Francis Crick Institute
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:figshare.com:article/11935...
Last time updated on 16/03/2018
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:160...
Last time updated on 15/12/2016
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1371%2Fjournal.pon...
Last time updated on 16/02/2019
Public Library of Science (PLOS)
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 18/09/2018
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:affff1937...
Last time updated on 13/10/2017
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:160...
Last time updated on 23/11/2016
D-Scholarship@Pitt
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:160...
Last time updated on 19/07/2013