CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Protease Cleavage Leads to Formation of Mature Trimer Interface in HIV-1 Capsid
Authors
Angela M. Gronenborn
Christopher Aiken
+9 more
Danxia Ke
Ernest Yufenyuy
Gongpu Zhao
Jinwoo Ahn
Jiying Ning
John A. T. Young
Maria DeLucia
Peijun Zhang
Xin Meng
Publication date
1 August 2012
Publisher
'Public Library of Science (PLoS)'
Doi
Cite
View
on
PubMed
Abstract
During retrovirus particle maturation, the assembled Gag polyprotein is cleaved by the viral protease into matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. To form the mature viral capsid, CA rearranges, resulting in a lattice composed of hexameric and pentameric CA units. Recent structural studies of assembled HIV-1 CA revealed several inter-subunit interfaces in the capsid lattice, including a three-fold interhexamer interface that is critical for proper capsid stability. Although a general architecture of immature particles has been provided by cryo-electron tomographic studies, the structural details of the immature particle and the maturation pathway remain unknown. Here, we used cryo-electron microscopy (cryoEM) to determine the structure of tubular assemblies of the HIV-1 CA-SP1-NC protein. Relative to the mature assembled CA structure, we observed a marked conformational difference in the position of the CA-CTD relative to the NTD in the CA-SP1-NC assembly, involving the flexible hinge connecting the two domains. This difference was verified via engineered disulfide crosslinking, revealing that inter-hexamer contacts, in particular those at the pseudo three-fold axis, are altered in the CA-SP1-NC assemblies compared to the CA assemblies. Results from crosslinking analyses of mature and immature HIV-1 particles containing the same Cys substitutions in the Gag protein are consistent with these findings. We further show that cleavage of preassembled CA-SP1-NC by HIV-1 protease in vitro leads to release of SP1 and NC without disassembly of the lattice. Collectively, our results indicate that the proteolytic cleavage of Gag leads to a structural reorganization of the polypeptide and creates the three-fold interhexamer interface, important for the formation of infectious HIV-1 particles. © 2012 Meng et al
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Public Library of Science (PLOS)
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019
D-Scholarship@Pitt
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:158...
Last time updated on 19/07/2013
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:158...
Last time updated on 23/11/2016
Public Library of Science (PLOS)
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 18/09/2018
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:4ba7f1075...
Last time updated on 12/10/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1371%2Fjournal.ppa...
Last time updated on 01/04/2019
The Francis Crick Institute
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:figshare.com:article/12105...
Last time updated on 16/03/2018
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:158...
Last time updated on 15/12/2016