CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Differences in reactivation of tuberculosis induced from anti-tnf treatments are based on bioavailability in granulomatous tissue
Authors
Denise E Kirschner
Dhruv Sud
+6 more
Dominik Wodarz
Hillarie Plessner
JoAnne L Flynn
John Chan
Philana Ling Lin
Simeone Marino
Publication date
1 October 2007
Publisher
'Public Library of Science (PLoS)'
Doi
View
on
PubMed
Abstract
The immune response to Mycobacterium tuberculosis (Mtb) infection is complex. Experimental evidence has revealed that tumor necrosis factor (TNF) plays a major role in host defense against Mtb in both active and latent phases of infection. TNF-neutralizing drugs used to treat inflammatory disorders have been reported to increase the risk of tuberculosis (TB), in accordance with animal studies. The present study takes a computational approach toward characterizing the role of TNF in protection against the tubercle bacillus in both active and latent infection. We extend our previous mathematical models to investigate the roles and production of soluble (sTNF) and transmembrane TNF (tmTNF). We analyze effects of anti-TNF therapy in virtual clinical trials (VCTs) by simulating two of the most commonly used therapies, anti-TNF antibody and TNF receptor fusion, predicting mechanisms that explain observed differences in TB reactivation rates. The major findings from this study are that bioavailability of TNF following anti-TNF therapy is the primary factor for causing reactivation of latent infection and that sTNF-even at very low levels-is essential for control of infection. Using a mathematical model, it is possible to distinguish mechanisms of action of the anti-TNF treatments and gain insights into the role of TNF in TB control and pathology. Our study suggests that a TNF-modulating agent could be developed that could balance the requirement for reduction of inflammation with the necessity to maintain resistance to infection and microbial diseases. Alternatively, the dose and timing of anti-TNF therapy could be modified. Anti-TNF therapy will likely lead to numerous incidents of primary TB if used in areas where exposure is likely. © 2007 Marino et al
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
D-Scholarship@Pitt
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:129...
Last time updated on 19/07/2013
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:129...
Last time updated on 23/11/2016
Public Library of Science (PLOS)
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:129...
Last time updated on 15/12/2016
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:0c1b63f02...
Last time updated on 12/10/2017