thesis

DESIGN AUTOMATION FOR LOW POWER RFID TAGS

Abstract

Radio Frequency Identification (RFID) tags are small, wireless devices capable of automated item identification, used in a variety of applications including supply chain management, asset management, automatic toll collection (EZ Pass), etc. However, the design of these types of custom systems using the traditional methods can take months for a hardware engineer to develop and debug. In this dissertation, an automated, low-power flow for the design of RFID tags has been developed, implemented and validated. This dissertation presents the RFID Compiler, which permits high-level design entry using a simple description of the desired primitives and their behavior in ANSI-C. The compiler has different back-ends capable of targeting microprocessor-based or custom hardware-based tags. For the hardware-based tag, the back-end automatically converts the user-supplied behavior in C to low power synthesizable VHDL optimized for RFID applications. The compiler also integrates a fast, high-level power macromodeling flow, which can be used to generate power estimates within 15% accuracy of industry CAD tools and to optimize the primitives and / or the behaviors, compared to conventional practices. Using the RFID Compiler, the user can develop the entire design in a matter of days or weeks. The compiler has been used to implement standards such as ANSI, ISO 18000-7, 18000-6C and 18185-7. The automatically generated tag designs were validated by targeting microprocessors such as the AD Chips EISC and FPGAs such as Xilinx Spartan 3. The corresponding ASIC implementation is comparable to the conventionally designed commercial tags in terms of the energy and area. Thus, the RFID Compiler permits the design of power efficient, custom RFID tags by a wider audience with a dramatically reduced design cycle

    Similar works