thesis

Assisted Viewpoint Interaction for 3D Visualization

Abstract

Many three-dimensional visualizations are characterized by the use of a mobile viewpoint that offers multiple perspectives on a set of visual information. To effectively control the viewpoint, the viewer must simultaneously manage the cognitive tasks of understanding the layout of the environment, and knowing where to look to find relevant information, along with mastering the physical interaction required to position the viewpoint in meaningful locations. Numerous systems attempt to address these problems by catering to two extremes: simplified controls or direct presentation. This research attempts to promote hybrid interfaces that offer a supportive, yet unscripted exploration of a virtual environment.Attentive navigation is a specific technique designed to actively redirect viewers' attention while accommodating their independence. User-evaluation shows that this technique effectively facilitates several visualization tasks including landmark recognition, survey knowledge acquisition, and search sensitivity. Unfortunately, it also proves to be excessively intrusive, leading viewers to occasionally struggle for control of the viewpoint. Additional design iterations suggest that formalized coordination protocols between the viewer and the automation can mute the shortcomings and enhance the effectiveness of the initial attentive navigation design.The implications of this research generalize to inform the broader requirements for Human-Automation interaction through the visual channel. Potential applications span a number of fields, including visual representations of abstract information, 3D modeling, virtual environments, and teleoperation experiences

    Similar works