The finite cell method is a highly flexible discretization technique for
numerical analysis on domains with complex geometries. By using a non-boundary
conforming computational domain that can be easily meshed, automatized
computations on a wide range of geometrical models can be performed.
Application of the finite cell method, and other immersed methods, to large
real-life and industrial problems is often limited due to the conditioning
problems associated with these methods. These conditioning problems have caused
researchers to resort to direct solution methods, which signifi- cantly limit
the maximum size of solvable systems. Iterative solvers are better suited for
large-scale computations than their direct counterparts due to their lower
memory requirements and suitability for parallel computing. These benefits can,
however, only be exploited when systems are properly conditioned. In this
contribution we present an Additive-Schwarz type preconditioner that enables
efficient and parallel scalable iterative solutions of large-scale multi-level
hp-refined finite cell analyses.Comment: 32 pages, 17 figure