research

Cambrian triangulations and their tropical realizations

Abstract

This paper develops a Cambrian extension of the work of C. Ceballos, A. Padrol and C. Sarmiento on ν\nu-Tamari lattices and their tropical realizations. For any signature ε{±}n\varepsilon \in \{\pm\}^n, we consider a family of ε\varepsilon-trees in bijection with the triangulations of the ε\varepsilon-polygon. These ε\varepsilon-trees define a flag regular triangulation Tε\mathcal{T}^\varepsilon of the subpolytope conv{(ei,ej)0i<jn+1}\operatorname{conv} \{(\mathbf{e}_{i_\bullet}, \mathbf{e}_{j_\circ}) \, | \, 0 \le i_\bullet < j_\circ \le n+1 \} of the product of simplices {0,,n}×{1,,(n+1)}\triangle_{\{0_\bullet, \dots, n_\bullet\}} \times \triangle_{\{1_\circ, \dots, (n+1)_\circ\}}. The oriented dual graph of the triangulation Tε\mathcal{T}^\varepsilon is the Hasse diagram of the (type AA) ε\varepsilon-Cambrian lattice of N. Reading. For any I{0,,n}I_\bullet \subseteq \{0_\bullet, \dots, n_\bullet\} and J{1,,(n+1)}J_\circ \subseteq \{1_\circ, \dots, (n+1)_\circ\}, we consider the restriction TI,Jε\mathcal{T}^\varepsilon_{I_\bullet, J_\circ} of the triangulation Tε\mathcal{T}^\varepsilon to the face I×J\triangle_{I_\bullet} \times \triangle_{J_\circ}. Its dual graph is naturally interpreted as the increasing flip graph on certain (ε,I,J)(\varepsilon, I_\bullet, J_\circ)-trees, which is shown to be a lattice generalizing in particular the ν\nu-Tamari lattices in the Cambrian setting. Finally, we present an alternative geometric realization of TI,Jε\mathcal{T}^\varepsilon_{I_\bullet, J_\circ} as a polyhedral complex induced by a tropical hyperplane arrangement.Comment: 16 pages, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions