We consider the graph class Grounded-L corresponding to graphs that admit an
intersection representation by L-shaped curves, where additionally the topmost
points of each curve are assumed to belong to a common horizontal line. We
prove that Grounded-L graphs admit an equivalent characterisation in terms of
vertex ordering with forbidden patterns.
We also compare this class to related intersection classes, such as the
grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance
graphs), or the outer-1-string graphs. We give constructions showing that these
classes are all distinct and satisfy only trivial or previously known
inclusions.Comment: 16 pages, 6 figure