research

Orthogonal involutions on central simple algebras and function fields of Severi-Brauer varieties

Abstract

An orthogonal involution σ\sigma on a central simple algebra AA, after scalar extension to the function field F(A)\mathcal{F}(A) of the Severi--Brauer variety of AA, is adjoint to a quadratic form qσq_\sigma over F(A)\mathcal{F}(A), which is uniquely defined up to a scalar factor. Some properties of the involution, such as hyperbolicity, and isotropy up to an odd-degree extension of the base field, are encoded in this quadratic form, meaning that they hold for the involution σ\sigma if and only if they hold for qσq_\sigma. As opposed to this, we prove that there exists non-totally decomposable orthogonal involutions that become totally decomposable over F(A)\mathcal{F}(A), so that the associated form qσq_\sigma is a Pfister form. We also provide examples of nonisomorphic involutions on an index 22 algebra that yield similar quadratic forms, thus proving that the form qσq_\sigma does not determine the isomorphism class of σ\sigma, even when the underlying algebra has index 22. As a consequence, we show that the e3e_3 invariant for orthogonal involutions is not classifying in degree 1212, and does not detect totally decomposable involutions in degree 1616, as opposed to what happens for quadratic forms

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/01/2021