research

Large deviations and continuity estimates for the derivative of a random model of logζ\log |\zeta| on the critical line

Abstract

In this paper, we study the random field \begin{equation*} X(h) \circeq \sum_{p \leq T} \frac{\text{Re}(U_p \, p^{-i h})}{p^{1/2}}, \quad h\in [0,1], \end{equation*} where (Up,p primes)(U_p, \, p ~\text{primes}) is an i.i.d. sequence of uniform random variables on the unit circle in C\mathbb{C}. Harper (2013) showed that (X(h),h(0,1))(X(h), \, h\in (0,1)) is a good model for the large values of (logζ(12+i(T+h)),h[0,1])(\log |\zeta(\frac{1}{2} + i (T + h))|, \, h\in [0,1]) when TT is large, if we assume the Riemann hypothesis. The asymptotics of the maximum were found in Arguin, Belius & Harper (2017) up to the second order, but the tightness of the recentered maximum is still an open problem. As a first step, we provide large deviation estimates and continuity estimates for the field's derivative X(h)X'(h). The main result shows that, with probability arbitrarily close to 11, \begin{equation*} \max_{h\in [0,1]} X(h) - \max_{h\in \mathcal{S}} X(h) = O(1), \end{equation*} where S\mathcal{S} a discrete set containing O(logTloglogT)O(\log T \sqrt{\log \log T}) points.Comment: 7 pages, 0 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions