We address the problem of causal discovery from data, making use of the
recently proposed causal modeling framework of modular structural causal models
(mSCM) to handle cycles, latent confounders and non-linearities. We introduce
{\sigma}-connection graphs ({\sigma}-CG), a new class of mixed graphs
(containing undirected, bidirected and directed edges) with additional
structure, and extend the concept of {\sigma}-separation, the appropriate
generalization of the well-known notion of d-separation in this setting, to
apply to {\sigma}-CGs. We prove the closedness of {\sigma}-separation under
marginalisation and conditioning and exploit this to implement a test of
{\sigma}-separation on a {\sigma}-CG. This then leads us to the first causal
discovery algorithm that can handle non-linear functional relations, latent
confounders, cyclic causal relationships, and data from different (stochastic)
perfect interventions. As a proof of concept, we show on synthetic data how
well the algorithm recovers features of the causal graph of modular structural
causal models.Comment: Accepted for publication in Conference on Uncertainty in Artificial
Intelligence 201