slides

Embedded error estimation and adaptive step-size control for optimal explicit strong stability preserving Runge--Kutta methods

Abstract

We construct a family of embedded pairs for optimal strong stability preserving explicit Runge-Kutta methods of order 2≤p≤42 \leq p \leq 4 to be used to obtain numerical solution of spatially discretized hyperbolic PDEs. In this construction, the goals include non-defective methods, large region of absolute stability, and optimal error measurement as defined in [5,19]. The new family of embedded pairs offer the ability for strong stability preserving (SSP) methods to adapt by varying the step-size based on the local error estimation while maintaining their inherent nonlinear stability properties. Through several numerical experiments, we assess the overall effectiveness in terms of precision versus work while also taking into consideration accuracy and stability.Comment: 22 pages, 49 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions