We consider the possibility that the neutral-current B anomalies are due to
radiative corrections generated by Yukawa interactions of quarks and leptons
with new vector-like quark and lepton electroweak doublets and new Standard
Model singlet scalars. We show that the restricted interactions needed can
result from an underlying Abelian family symmetry and that the same symmetry
can give rise to an acceptable pattern of quark and charged lepton masses and
mixings, providing a bridge between the non-universality observed in the
B-sector and that of the fermion mass matrices. We construct two simple models,
one with a single singlet scalar in which the flavour changing comes from quark
and lepton mixing and one with an additional scalar in which the flavour
changing can come from both fermion and scalar mixing. We show that for the
case the new quarks are much heavier than the new leptons and scalars the B
anomalies can be due to box diagrams with couplings in the perturbative regime
consistent with the bounds coming from Bs−Bˉs, K−Kˉ and D−Dˉ mixing as well as other lepton family number violating processes. The
new states can be dark matter candidates and, in the two scalar model with a
light scalar of O(60) GeV and vector-like lepton of O(100) GeV, there can be a
simultaneous explanation of the B-anomalies, the muon anomalous magnetic moment
and the dark matter abundance.Comment: Replacement contains few additional reference