thesis

Knowledge compilation for online decision-making : application to the control of autonomous systems = Compilation de connaissances pour la décision en ligne : application à la conduite de systèmes autonomes

Abstract

La conduite de systèmes autonomes nécessite de prendre des décisions en fonction des observations et des objectifs courants : cela implique des tâches à effectuer en ligne, avec les moyens de calcul embarqués. Cependant, il s'agit généralement de tâches combinatoires, gourmandes en temps de calcul et en espace mémoire. Réaliser ces tâches intégralement en ligne dégrade la réactivité du système ; les réaliser intégralement hors ligne, en anticipant toutes les situations possibles, nuit à son embarquabilité. Les techniques de compilation de connaissances sont susceptibles d'apporter un compromis, en déportant au maximum l'effort de calcul avant la mise en situation du système. Ces techniques consistent à traduire un problème dans un certain langage, fournissant une forme compilée de ce problème, dont la résolution est facile et la taille aussi compacte que possible. La traduction peut être très longue, mais n'est effectuée qu'une seule fois, hors ligne. Il existe de nombreux langages-cible de compilation, notamment le langage des diagrammes de décision binaires (BDDs), qui ont été utilisés avec succès dans divers domaines (model-checking, configuration, planification). L'objectif de la thèse était d'étudier l'application de la compilation de connaissances à la conduite de systèmes autonomes. Nous nous sommes intéressés à des problèmes réels de planification, qui impliquent souvent des variables continues ou à grand domaine énuméré (temps ou mémoire par exemple). Nous avons orienté notre travail vers la recherche et l'étude de langages-cible de compilation assez expressifs pour permettre de représenter de tels problèmes.Controlling autonomous systems requires to make decisions depending on current observations and objectives. This involves some tasks that must be executed online-with the embedded computational power only. However, these tasks are generally combinatory; their computation is long and requires a lot of memory space. Entirely executing them online thus compromises the system's reactivity. But entirely executing them offline, by anticipating every possible situation, can lead to a result too large to be embedded. A tradeoff can be provided by knowledge compilation techniques, which shift as much as possible of the computational effort before the system's launching. These techniques consists in a translation of a problem into some language, obtaining a compiled form of the problem, which is both easy to solve and as compact as possible. The translation step can be very long, but it is only executed once, and offline. There are numerous target compilation languages, among which the language of binary decision diagrams (BDDs), which have been successfully used in various domains of artificial intelligence, such as model-checking, configuration, or planning. The objective of the thesis was to study how knowledge compilation could be applied to the control of autonomous systems. We focused on realistic planning problems, which often involve variables with continuous domains or large enumerated domains (such as time or memory space). We oriented our work towards the search for target compilation languages expressive enough to represent such problems

    Similar works