MOESM1 of Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics

Abstract

Additional file 1: Text S1. Comparison of Syntrophorhabdus genomes. Figure S1. The bioinformatics analysis workflow. Figure S2. Genome-wide statistics of taxonomic distribution of protein-coding genes in reconstructed genomes. Figure S3. Genome comparison between G1 and other sequenced ε-Proteobacteria. Figure S4. The “Dch-Had-Oah” pathway encoded in Syntrophorhabdus genomes constructed from phenol-degrading reactors. Figure S5. Key KEGG pathways encoded in the genomes of G3 and G6. Table S1. Assembly statistics of the MP and AP metagenomes. Table S2. List of 107 essential single-copy marker genes (ESCGs) and 35 conserved clusters of orthologous group markers (COGs). Table S3. Genomic information of 23 genomes reconstructed from phenol-degrading metagenomes. Table S4. Comparison between uncultured Sulfurovum-like G1 and typical sulfur- and/or hydrogen-oxidizing ε-Proteobacteria. Table S5. Genomic overview and comparison of three draft genomes of Syntrophorhabdus. G2 and strain UI both belong to the same species S. aromaticivorans, whereas G5 is affiliated with a novel Syntrophorhabdus species. NA: not applicable; ND: not detected. Table S6. Enzymes encoded by Cryptanaerobacter sp. G14 for phenol biodegradation, dissimilatory sulfite reduction, syntrophic propionate oxidation, and pyruvate metabolism. Table S7. Key KEGG metabolic pathway enzymes encoded in reconstructed genomes. G1: uncultured ε-Proteobacterium; G3: uncultured Chloroflexi T78 clade bacterium; G6: Brachymonas; G7: Advenella; G12: Syntrophus aciditrophicus; G15: uncultured Mycobacterium species; G21: uncultured Smithella species

    Similar works

    Full text

    thumbnail-image

    Available Versions