Intermediacy of Ni–Ni Species in sp<sup>2</sup> C–O Bond Cleavage of Aryl Esters: Relevance in Catalytic C–Si Bond Formation

Abstract

Monodentate phosphine ligands are frequently employed in the Ni-catalyzed C–O functionalization of aryl esters. However, the extensive body of preparative work on such reactions contrasts with the lack of information concerning the structure and reactivity of the relevant nickel intermediates. In fact, experimental evidence for a seemingly trivial oxidative addition into the C–O bond of aryl esters with monodentate phosphines and low-valent nickel complexes still remains elusive. Herein, we report a combined experimental and theoretical study on the Ni(0)/PCy<sub>3</sub>-catalyzed silylation of aryl pivalates with CuF<sub>2</sub>/CsF additives that reveals the involvement of unorthodox dinickel oxidative addition complexes in C–O bond cleavage and their relevance in C–Si bond formation. We have obtained a mechanistic picture that clarifies the role of the additives and demonstrates that dinickel complexes act as reservoirs of the propagating monomeric nickel complexes by disproportionation. We believe this study will serve as a useful entry point to unravelling the mechanistic underpinnings of other related Ni-catalyzed C–O functionalization reactions employing monodentate phosphines

    Similar works

    Full text

    thumbnail-image

    Available Versions