<p>Systemic lupus erythematosus (SLE) is a typical autoimmune disease. Genome-wide analyses have revealed that interleukin-1 receptor-associated kinase 1 (IRAK1) is associated with susceptibility to SLE. Our previous study investigated the role of IRAK1 in nuclear factor-κB (NF-κB)-related pathways in a mouse model of lupus. In this study, we aimed to further explore the etiological role of IRAK1. The gene expression and phosphorylation of IRAK1 in CD4<sup>+</sup> T cells from lupus patients and healthy controls were examined by quantitative reverse transcription-polymerase chain reaction and western blotting, respectively. The percentage of circulating Th17 cells and plasma IL-17A levels were evaluated by flow cytometry and enzyme-linked immunosorbent assay, respectively. The influence of IRAK1 suppression on Th17 development was assessed using an IRAK1 inhibitor and small interfering RNA. We found that IRAK1 transcript levels in CD4<sup>+</sup> T cells were significantly upregulated in SLE patients in comparison to controls and were positively correlated with disease activity. <i>In vitro</i> experiments showed that lupus CD4<sup>+</sup> T cells had more pronounced IRAK1 phosphorylation at threonine-209 upon IL-1β stimulation than did control cells. Moreover, IRAK1 expression was positively associated with Th17/IL-17A in patients. When naïve CD4<sup>+</sup> T cells were polarized toward the Th17 subset, IRAK1 inhibition significantly repressed IL-17A production and the gene expression of Th17 markers, namely, retinoic acid receptor-related orphan receptor c, IL-23 receptor and IL-17A. In summary, IRAK1 is overexpressed and hyperactivated in CD4<sup>+</sup> T cells from SLE patients. IRAK1 inhibition attenuates Th17 differentiation in the context of human SLE, suggesting a therapeutic opportunity.</p