Early Palaeozoic sub-arc chromitite-bearing peridotite in the Kudi ophiolite on the westernmost Tibetan Plateau

Abstract

<p>A chromite deposit was discovered in the Kudi ophiolite in the Palaeozoic western Kunlun orogenic belt. Chromite forms elongated (<2 m in width) and banded chromitite bodies (<0.1 m in width for each band) in dunite and podiform chromitite bodies (<1.5 m in width) in harzburgite. Dunite is classified into two types. Type I dunite hosting massive and banded chromitites shows low Fo in olivine (88.1–90.9), moderate Cr<sup>#</sup> [=Cr/(Cr + Al), 0.47–0.56] in chromite, and a positively sloped primitive mantle-normalized platinum group elements (PGE) pattern, suggesting that it is a cumulate of a mafic melt. Harzburgite and type II dunite show olivine with high Fo (>91.1) and chromite with moderate to high Cr<sup>#</sup> (0.44–0.61), and flat to negatively sloped primitive mantle-normalized PGE patterns, indicating that they are residual mantle peridotite after partial melting. Chromite in all three types of chromitites has relatively uniform moderate values Cr<sup>#</sup> ranging from 0.43 to 0.56. Massive chromitite contains euhedral chromite with high TiO<sub>2</sub> (0.40–0.43 wt.%) and has a positively sloped primitive mantle-normalized PGE pattern, suggesting that it represents a cumulate of a melt. Rocks containing disseminated and banded chromite show overall low total PGE, < 117 ppb, and a negatively sloped primitive mantle-normalized PGE pattern. Chromite grains in these two types of occurrences are irregular in shape and enclose olivine grains, suggesting that chromite formed later than olivine. We suggest that chromite-oversaturated melt penetrated into the pre-existing dunite and crystallized chromite. The oxygen fugacity (<i>f</i>O<sub>2</sub> values of chromitites and peridotites are high, ranging from FMQ+0.8 (0.8 logarithmic unit above the fayalite-magnetite-quartz buffer) to FMQ+2.3 for chromitites and from FMQ+0.9 to FMQ+2.8 for peridotites (dunite and harzburgite). The mineral compositions and high <i>f</i>O<sub>2</sub> values as well as estimated parental magma compositions of the chromitites suggest that the Kudi ophiolite formed in a sub-arc setting.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions