research

Design of controllers for a Non-linear system using Pole-placement and Linear Quadratic Regulator Technique to solve Servo and Regulatory problem

Abstract

This project mainly discusses about the design of controller for a nonlinear system like rotary inverted pendulum. This system is under actuated and well-suited for verification and practice of ideas emerging in control theory. Nonlinear systems exhibit instability, making the design of controllers for balancing in the stable position, a challenging problem. The dynamic model of the rotary inverted pendulum is identified first and the state space representation of the system is obtained. The controller is designed by using the pole placement technique and Linear Quadratic Regulator technique in MATLAB software package. The regulatory problem and the servo problem of rotary inverted pendulum system is solved with these controllers designed. The different controller design is implemented in simulation and their performances are compared. Simulation results onto a nonlinear system are given to illustrate the effectiveness of the developed strategies.nbs

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 09/08/2018