Gli astrociti, cellule non eccitabili del cervello, dapprima considerate solo cellule di supporto all’attività neuronale, hanno un ruolo centrale nella fisiologia cerebrale mantenendo l’omeostasi di ioni, acqua e neurotrasmettitori, e modulando anche l’attività neuronale, attraverso il rilascio di neurotrasmettitori. La disfunzione degli astrociti può concorrere alla patogenesi di neuropatologie acute e croniche come Ischemia o Malattia di Alzheimer. Gli astrociti svolgono li loro funzioni tramite canali ionici, trasportatori e canali per l’acqua e comunicando attraverso segnali di calcio intracellulare. Considerata l’importanza emersa degli astrociti, è fondamentale provvedere alla scoperta dei meccanismi molecolari e funzionali alla base della loro attività. Tuttavia, le metodologie allo stato dell’arte per lo studio della fisiologia astro gliale, sono state sviluppate principalmente per studiare i neuroni. Questo dato potrebbe aver limitato la capacità di comprensione dei suddetti fenomeni. In questo contesto, lo studio di cellule in vitro potrebbe avere grande rilevanza nell’avanzamento della conoscenza dei principi biofisici e molecolari che regolano l’attività degli astrociti. Tuttavia, le proprietà morfologiche e funzionali delle cellule astrogliali in vitro, sono molto diverse da quelle osservate in vivo. In quest’ottica, questo lavoro di tesi è stato focalizzato sullo studio di materiali nanostrutturati e dispositivi bioelettronici, che consentissero di differenziare gli astrociti in vitro e/o di generare strumenti innovativi per lo studio e la modulazione della funzione astrogliale. Studi di biocompatibilità tramite i test di vitalità cellulare, immunofluorescenza e Western Blot, degli astrociti su interfacce nanostrutturate, costituite da idrotalciti, nanofili di silicio e ossido di grafene o da loro derivati, sono stati ricavati dati di notevole importanza per sviluppare dispositivi utili allo studio e alla modulazione della fisiologia astrogliale