thesis

Security of Smartphones at the Dawn of their Ubiquitousness

Abstract

The importance of researching in the field of smartphone security is substantiated in the increasing number of smartphones, which are expected to outnumber common computers in the future. Despite their increasing importance, it is unclear today if mobile malware will play the same role for mobile devices as for common computers today. Therefore, this thesis contributes to defining and structuring the field mobile device security with special concern on smartphones and on the operational side of security, i.e., with mobile malware as the main attacker model. Additionally, it wants to give an understanding of the shifting boundaries of the attack surface in this emerging research field. The first three chapters introduce and structure the research field with the main goal of showing what has to be defended against today. Besides introducing related work they structure mobile device attack vectors with regard to mobile malicious software and they structure the topic of mobile malicious software itself with regard to its portability. The technical contributions of this thesis are in Chapters 5 to 8, classified according to the location of the investigation (on the device, in the network, distributed in device and network). Located in the device is MobileSandbox, a software for dynamic malware analysis. As another device-centric contribution we investigate on the efforts that have to be taken to develop an autonomously spreading smartphone worm. The results of these investigations are used to show that device-centric parts are necessary for smartphone security. Additionally, we propose a novel device-centric security mechanism that aims at reducing the attack surface of mobile devices to mobile malware. The network-centric investigations show the possibilities that a mobile network operator can use in its own mobile network for protecting the mobile devices of its clients. We simulate the effectiveness of different security mechanisms. Finally, the distributed investigations show the feasibility of distributed computation algorithms with security modules. We give prototypic implementations of protocols for secure multiparty computation as a modularized version with failure detector and consensus algorithms, and for fair exchange with guardian angels

    Similar works