thesis

Fast Fourier Transform at Nonequispaced Nodes and Applications

Abstract

The direct computation of the discrete Fourier transform at arbitrary nodes requires O(NM) arithmetical operations, too much for practical purposes. For equally spaced nodes the computation can be done by the well known fast Fourier transform (FFT) in only O(N log N) arithmetical operations. Recently, the fast Fourier transform for nonequispaced nodes (NFFT) was developed for the fast approximative computation of the above sums in only O(N log N + M log 1/e), where e denotes the required accuracy. The principal topics of this thesis are generalizations and applications of the NFFT. This includes the following subjects: - Algorithms for the fast approximative computation of the discrete cosine and sine transform at nonequispaced nodes are developed by applying fast trigonometric transforms instead of FFTs. - An algorithm for the fast Fourier transform on hyperbolic cross points with nonequispaced spatial nodes in 2 and 3 dimensions based on the NFFT and an appropriate partitioning of the hyperbolic cross is proposed. - A unified linear algebraic approach to recent methods for the fast computation of matrix-vector-products with special dense matrices, namely the fast multipole method, fast mosaic-skeleton approximation and H-matrix arithmetic, is given. Moreover, the NFFT-based summation algorithm by Potts and Steidl is further developed and simplified by using algebraic polynomials instead of trigonometric polynomials and the error estimates are improved. - A new algorithm for the characterization of engineering surface topographies with line singularities is proposed. It is based on hard thresholding complex ridgelet coefficients combined with total variation minimization. The discrete ridgelet transform is designed by first using a discrete Radon transform based on the NFFT and then applying a dual-tree complex wavelet transform. - A new robust local scattered data approximation method is introduced. It is an advancement of the moving least squares approximation (MLS) and generalizes an approach of van den Boomgard and van de Weijer to scattered data. In particular, the new method is space and data adaptive

    Similar works