thesis

Consistency Algorithms and Protocols for Distributed Interactive Applications

Abstract

The Internet has a major impact not only on how people retrieve information but also on how they communicate. Distributed interactive applications support the communication and collaboration of people through the sharing and manipulation of rich multimedia content via the Internet. Aside from shared text editors, meeting support systems, and distributed virtual environments, shared whiteboards are a prominent example of distributed interactive applications. They allow the presentation and joint editing of documents in video conferencing scenarios. The design of such a shared whiteboard application, the multimedia lecture board (mlb), is a main contribution of this thesis. Like many other distributed interactive applications, the mlb has a replicated architecture where each user runs an instance of the application. This has the distinct advantage that the application can be deployed in a lightweight fashion, without relying on a supporting server infrastructure. But at the same time, this peer-to-peer architecture raises a number of challenging problems: First, application data needs to be distributed among all instances. For this purpose, we present the network protocol RTP/I for the standardized communication of distributed interactive applications, and a novel application-level multicast protocol that realizes efficient group communication while taking application-level knowledge into account. Second, consistency control mechanisms are required to keep the replicated application data synchronized. We present the consistency control algorithms “local lag”, “Timewarp”, and “state request”, show how they can be combined, and discuss how to provide visual feedback so that the session members are able to handle conflicting actions. Finally, late-joining participants need to be initialized with the current application state before they are able to participate in a collaborative session. We propose a novel late-join algorithm, which is both flexible and scalable. All algorithms and protocols presented in this dissertation solve the aforementioned problems in a generic way. We demonstrate how they can be employed for the mlb as well as for other distributed interactive applications

    Similar works