research

Damage investigation in CFRP composites using full-field measurement techniques: combination of digital image stereo-correlation, infrared thermography and X-ray tomography

Abstract

The present work is devoted to damaging process in carbon–fiber reinforced laminated composites. An original experimental approach combining three optical measurement techniques is presented. Image stereo-correlation and infrared thermography, that respectively provide the kinematic and thermal fields on the surface of the composites, are used in live recording during axis and off-axis tensile tests. Special attention is paid to simultaneously conduct these two techniques while avoiding their respective influence. On the other hand, X-ray tomography allows a post-failure analysis of the degradation patterns within the laminates volume. All these techniques are non-destructive (without contact) and offer an interesting full-field investigation of the material response. Their combination allows a coupled analysis of different demonstrations of same degradation mechanisms. For instance, thermal events and densimetric fields show a random location of damage in the early stages of testing. The influence of the material initial anisotropy on damage growth, localization and failure mode can also be clearly put in evidence through various data. In addition to such characterization, this study illustrates at the same time the capabilities of the different full-field techniques and the damage features they can best capture respectively

    Similar works