In the present work we embrace a three scales asymptotic homogenization approach to investigate the effective behavior of hierarchical linear elastic composites reinforced by cylindrical, uniaxially aligned fibers and possessing a periodic structure at each hierarchical level of organization. We present our novel results assuming isotropy of the constituents and focusing on the effective out-of-plane shear modulus, which is computed exploiting the solution of the arising anti-plane problems. The latter are solved semi-analytically by means of complex variables and successfully benchmarked against the results obtained by finite elements. Our findings can pave the way for multiscale modeling of complex hierarchical materials (such as bone and tendons) at a negligible computational cost