Herein we show that glycerol can be considered as a promising cheap and green solvent for the regioselective β,β-diarylation of alkenes. Whereas this reaction is generally catalyzed under an inert atmosphere by expensive phosphine or carbene-palladium complexes, we show here that the diarylation of alkenes can be conveniently achieved in glycerol in the presence of air-stable palladium nanoparticles. These palladium nanoparticles were stabilized over a sugar-based surfactant derived from biomass. By an adjustment of the reaction temperature, we were able to control the mono- and diarylation step of alkenes, thus offering a convenient route to unsymmetrical diarylated alkenes. At the end of the reaction, the diarylated alkenes were cleanly and selectively extracted from the glycerol-palladium catalytic phase using supercritical carbon dioxide, thus affording a convenient purification work-up. Within the framework of green chemistry, this work combines (i) catalysis in a cheap, safe and sustainable medium, (ii) easily made and air-stable palladium nanoparticles as the catalyst, and (iii) a clean and selective extraction of the reaction products with supercritical carbon dioxide