Fruit ripening is a sophisticatedly orchestrated developmental process, unique to plants, that
results in major physiological and metabolic changes, ultimately leading to fruit decay and seed
dispersal. Because of their strong impact on fruit nutritional and sensory qualities, the ripeningassociated
changes have been a matter of sustained investigation aiming at unravelling the
molecular and genetic basis of fruit ripening. Tomato rapidly emerged as the model of choice for
fleshy fruit research and a wealth of genetic resources and genomics tools have been developed,
providing new entries into the regulatory mechanisms involved in the triggering and coordination
of the ripening process. Some of the key components participating in the control of tomato fruit
ripening have been uncovered, but our knowledge of the network of signalling pathways engaged in
this complex developmental process remains fragmentary. This review highlights the main
advances and emphasizes issues still to be addressed using the rapidly developing ‘omics’
approaches