thesis

The Mechanism and Modulation of H-NS Mediated Repression in Escherichia coli.

Abstract

The histone-like nucleoid structuring protein H-NS acts as a global repressor of genes that are expressed in response to environmental stimuli and stress conditions. Repression by H-NS is presumably mediated by binding of H NS to primary "nucleation sites" close to promoters, and the formation of extended nucleoprotein complex from these nucleation sites to inhibit transcription initiation. Modulation of H-NS mediated repression is a complex process involving specific transcription factors and physiology dependent structural alterations. The E. coli bgl and proU operons are model systems that are repressed by H-NS with exceptional specificity. Both of these systems possess upstream and downstream regulatory elements (URE and DRE) bound by H-NS for efficient repression. The present study demonstrates that repression by H-NS binding upstream and downstream is synergistic in proU (as shown in a parallel study for bgl), and that H-NS when bound within the transcription unit represses transcription initiation at the bgl promoter, as reported before for proU. Repression by binding of H-NS downstream is known to be modulated. Common to both proU and bgl is that an increase in the promoter activity abrogates repression. For bgl it is known, that the H-NS mediated repression of the promoter is counteracted by transcription factors BglJ and LeuO. Further, termination factor Rho and the protease Lon are known to modulate repression by H-NS through the DRE, and as shown here the DnaKJ chaperone system is essential for this repression. In case of proU, the promoter is osmoregulated; the RNA polymerase is poised at the promoter at low osmolarity, while it clears the promoter with better efficiency at high osmolarity. Furthermore, the proU operon is subject to post-transcriptional osmoregulation. The proU mRNA is processed by RNAse III within a stretch of highly conserved sequence, suggesting a common mechanism of regulation among Enterobacteria. In summary, the present study demonstrates that the mechanism of H-NS mediated repression of the bgl and proU operons is very similar. However, its modulation is complex involving numerous additional factors specific to the two systems, and thus is achieved in a context specific manner

    Similar works