research

Light trapping properties of cylindrical well diffraction gratings in solar cells: Computational calculations

Abstract

Light trapping using diffraction gratings is a promising approach to increasing absorption in solar cells. In this paper, the computationally calculated absorption enhancement expected from a diffraction grating consisting of a triangular array of cylindrical wells is presented. Angle-extended polychromatic illumination is considered, and special attention is paid to absorption of sub-bandgap photons in an intermediate band solar cell. Results are compared to the absorption enhancement expected from an ideal Lambertian (randomizing) scatterer, which is considered as a baseline. It is found that for cells which absorb very weakly, the diffraction grating provides absorption enhancement above that of the ideal Lambertian scatterer over a wide wavelength range. For cells which absorb more strongly, the grating underperforms the ideal Lambertian scatterer over almost all wavelengths. Finally, the grating period, well height and well radius are optimised. Keywords: Light Trapping, Diffraction Grating, Intermediate Band Solar Cel

    Similar works