Entropic Bonding in Nanoparticle and Colloidal Systems

Abstract

Scientists and engineers will create the next generation of materials by precisely controlling their microstructure. One of the most promising and effective methods to control material microstructure is self-assembly, in which the properties of constituent “particles” guide their assembly into the desired structure. Self- assembly mechanisms rely on both inherent interactions between particles and emergent interactions resulting from the collective effects of all particles in the system. These emergent effects are of interest as they provide minimal mechanisms to control self-assembly, and thus can be used in conjunction with other assembly methods to create novel materials. Literature shows that complex phases can be obtained solely from hard, anisotropic particles, which are attracted via an emergent Directional Entropic Force. This thesis shows that this force gives rise to the entropic bond, a mesoscale analog to the chemical bond. In Chapter 3 I investigate the self- assembly of a system from a random tiling into an ordered crystal. Analysis of the emergent directional entropic forces reveal the importance of shape in the final self-assembled system as well as the ability for shape manipulation to control the final self-assembled structure. In Chapter 4, I investigate three-dimensional analogs of two-dimensional systems in Chapter 3, explaining the self-assembly behavior of these systems via understanding of the emergent directional entropic forces. In Chapter 5 I investigate the nature of the entropic bond, investigating two-dimensional systems of hexagonal nanoplatelets. The Entropic bond is quantified, and the ability to manipulate the bonds to produce similar self- assembly behavior to chemically-functionalized nanoparticles is demonstrated. Finally, Chapter 6 investigates the phase transitions of the general class of particle studied in Chapter 5, showing the ability for particle shape to change the type of phase transition present in a system of nanoparticles as well as stabilize phases otherwise not found. As a whole, this work details the nature of the entropic bond and its use in directing the self-assembly of systems of non- interacting anisotropic particles.PHDMaterials Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144096/1/harperic_1.pd

    Similar works

    Full text

    thumbnail-image