research

Practical gigahertz quantum key distribution robust against channel disturbance

Abstract

Quantum key distribution (QKD) provides an attractive solution for secure communication. However, channel disturbance severely limits its application when a QKD system is transfered from the laboratory to the field. Here, a high-speed Faraday-Sagnac-Michelson QKD system is proposed that can automatically compensate for the channel polarization disturbance, which largely avoids the intermittency limitations of environment mutation. Over a 50-km fiber channel with 30-Hz polarization scrambling, the practicality of this phase-coding QKD system was characterized with an interference fringe visibility of 99:35% over 24 hours, and a stable secure key rate of 306k bits/s over 7 days without active polarization alignment

    Similar works

    Full text

    thumbnail-image

    Available Versions