Crystalline silicon (c-Si) solar cells can be considered a highly industrialized and mature product with a record conversion efficiency of 26.6%, not far from the practical limit of 29.4% (for single p/n junction devices). Accordingly, current research and development are addressing some remaining efficiency and cost limitations, including the reduction of (1) carrier recombination in highly doped materials, (2) parasitic absorption by narrow band gap films and (3) high temperature energy-intensive processing (especially critical for wafer thicknesses below 100 µm).
In parallel, thin-film PV (e.g. organics and perovskites) have introduced a large number of dopant-free, hole- or electron-selective materials with optoelectronic properties that are comparable or superior to standard p- and n-doped layers in c-Si. Consequently, this thesis work explores novel heterojunctions between c-Si and these carrier-selective contact materials, putting special emphasis on TMO thin films whose wide energy band gap (>3 eV), surface passivation and large work function (>5 eV) characteristics permit their utilization as transparent/passivating/hole-selective front contacts in n-type c-Si (n-Si) solar cells.
To this purpose, a comparative study among three thermally evaporated TMOs (V2O5, MoO3 and WO3) allowed correlating their chemical composition with thin film conductivity, optical transmittance, passivation potential and contact resistance on n-Si substrates. The variation of these properties with film thickness, air exposure or temperature annealings was also studied.
Overall, V2Ox outperformed the other oxides by obtaining higher implied open-circuit voltages and lower contact resistances, translating into higher selectivities.
Next, a thorough study of the TMO/c-Si interface was performed by electron microscopy, secondary ion-mass spectrometry and x-ray photoelectron spectroscopy, identifying two separate contributions to the observed passivation: (1) a chemical component, as evidenced by a thin SiOx interlayer naturally-grown by chemical reaction during TMO evaporation; and (2) a "field-effect" component, a result of a strong inversion (p+) of the n-Si surface, induced by the large work function difference between both materials. Considering all this, an energy band diagram for the TMO/SiOx/n-Si heterojunction was proposed, reflecting the possible physicochemical mechanisms behind c-Si passivation and carrier transport.
Then, the characterized TMO/n-Si heterojunctions were implemented as front hole contacts in complete solar cell devices, using thin TMO films (15 nm) contacted by an indium-tin oxide (ITO) anti-reflection/conductive electrode and a silver finger grid. As rear electron contacts, n-type a-SiCx:H thin films (20 nm) were used in localized (laser-doped) and full-area configurations, the former contacted by titanium/aluminum while the latter by ITO/silver electrodes. The best performance solar cells were obtained for
V2Ox/n-Si heterojunctions, characterized by an open-circuit voltage (VOC) close to 660 mV and a maximum conversion efficiency of 16.5%. Additional characterization confirmed the good quality of the induced p+/n-Si junction, with ideality factors close to 1 and built-in potentials above 700 mV. Moreover, a photocurrent gain of ~1 mA/cm2 (300-550 nm wavelength range) was directly attributed to the difference in energy band gaps between TMOs (>2.5 eV) and the a-SiCx:H reference (~1.7 eV). On a sideline, hole-selective contacts based on PEDOT:PSS polymer solutions were also characterized, resulting in a moderate conversion efficiency of 11.6% in ITO-free devices.
Finally, it is worth emphasizing the high degree of innovation in this thesis project, reporting for the first time the properties of these alternative contact materials in the context of c-Si photovoltaics and contributing to a more generic understanding of solar cell operation and design.Las celdas solares de silicio cristalino (c-Si) pueden ser consideradas un producto maduro y altamente industrializado, con eficiencias de conversión record de 26.6% muy cercanas al límite práctico de 29.4%. En consecuencia, la investigación y desarrollo actuales están abordando las limitantes restantes en eficiencia y costes, incluyendo la reducción de (1) la recombinación de portadores en materiales altamente dopados, (2) la absorción parásita debido a energías de banda prohibida insuficientes y (3) los procesos térmicos (un factor crítico para obleas delgadas de 100 micras o menos). En paralelo, tecnologías de capa delgada (e.g. orgánicos y perovskitas) han introducido un gran número de materiales selectivos a electrones o huecos, libres de dopantes y cuyas propiedades optoelectrónicas son comparables o superiores a las capas dopadas tipo-n o tipo-p usadas de manera estándar en c-Si. Es así que esta tesis explora heterouniones novedosas entre c-Si y dichos materiales de contacto selectivos, poniendo especial énfasis en capas delgadas de TMOs cuya energía de band prohibida (>3 eV), pasivación superficial y alta función de trabajo (>5 eV) permiten su utilización como contactos frontales, transparentes, pasivantes y selectivos a huecos en celdas con substrato tipo-n (n-Si). Con este propósito, se realizó un estudio comparativo entre tres TMOs evaporados térmicamente (V2O5, MoO3 and WO3) que permitió correlacionar su composición química con la conductividad, transmitancia óptica, pasivación y resistencia de contacto de capas delgadas sobre sustratos de n-Si. La variabilidad de estas propiedades con el grosor de las capas, su exposición al aire o a recocidos de alta temperatura también fue estudiada. En general, V2Ox tuvo un mejor desempeño que el resto de los óxidos al obtener mayores pseudo-voltajes de circuito abierto y menores resistencias de contacto, traduciéndose en una mayor selectividad. En seguida, un estudio detallado de la interface TMO/c-Si fue llevado a cabo mediante microscopia de electrones, espectrometría de masas de iones secundarios y espectroscopia fotoelectrónica de rayos-x, identificando dos contribuciones a la pasivación superficial: (1) un componente químico, demostrado por la presencia de una inter-capa de SiOx formada mediante reacción química durante el depósito del TMO; y (2) un componente de "efecto de campo", que es resultado de la fuerte inversión de la superficie (p+/n-Si) inducida por la gran disparidad en funciones de trabajo entre ambos materiales. Bajo esta consideración, se propuso un diagrama de bandas para la heterounión TMO/SiOx/n-Si que refleja los posibles mecanismos de pasivación y transporte de cargas. Acto seguido, se implementaron dichas heterouniones como contactos tipo-p frontales en celdas solares finalizadas, con la estructura Ag/ITO(80 nm)/TMO (15 nm)/n-Si, donde el ITO "óxido de indio y estaño" sirve de capa antirreflejo conductora y la plata como electrodo. Para el contacto tipo-n trasero, capas de a-SiCx:H dopado (20 nm) fueron utilizadas en dos configuraciones (dopado puntual por láser y contacto en área completa). El mejor desempeño se obtuvo para las celdas de V2Ox/n-Si, caracterizadas por voltajes de circuito abierto (Voc) cercanos a 660 mV y una eficiencia máxima de 16.5%. La caracterización adicional de estos dispositivos reveló factores de idealidad cercanos a 1 y una barrera interna de potencial mayor a 700 mV, comprobando la buena calidad de la unión p+/n-Si inducida. Además, ganancias en fotocorriente de ~1 mA/cm2 (para el rango de longitudes de onda de 300-550 nm) fueron directamente atribuidas a las diferencias en energías de banda prohibida entre el TMO (>2.5 eV) y la capa referencia de a-SiCx:H (~1.7 eV). Finalmente, vale la pena enfatizar el alto grado de innovación en este proyecto de tesis, reportando por primera vez las propiedades de estos materiales de contacto alternativos en el contexto de la fotovoltaica de silicio.Postprint (published version