The sporulation-specific small regulatory RNAs of Bacillus subtilis

Abstract

Constantly changing environments in nature have led to bacteria evolving regulatory strategies that result in differential gene expression. A novel and understudied aspect of these networks are regulatory RNAs. The Gram-positive model organism Bacillus subtilis not only modulates gene expression to survive a variety of stresses, but also can form endospores to ensure its survival. Sporulation is an essential survival mechanism for many species, allowing them to enter a state of dormancy with resistance to various harsh conditions. This, in turn, ensures survival of not only the population, but also the species. The process of sporulation requires the controlled expression of approximately a quarter of the genes encoded by B. subtilis. Previous large-scale studies have identified that many transcripts do not encode proteins, but exhibited expression profiles similar to genes already known to be part of the sporulation network. Many of these transcripts were selected to likely function as small regulatory RNAs (sRNAs). This study has shown that many putative sRNAs are active during sporulation, three of which show specific phenotypes that alter germination capabilities in the presence of specific germinants. Cells lacking the necessary components to reverse this process are at a strong disadvantage. Detection of favorable growth conditions is key, but how is this conveyed during metabolic inactivity? Initial selection of putative sRNAs was done by in silico characterization. Prediction of transcriptional control and regulatory regions combined with tiling array profiling was used to select putative sRNAs for confirmation in vivo. Transcriptional fusion constructs were generated to confirm compartmental specific expression during sporulation. Spore specific sRNAs were further characterized with phenotypic studies, which suggested a role in endospore formation. This study explored some of the global analysis methods to identify sRNA targets. Whilst no targets for the four chosen sRNAs could be identified, this study produced the most comprehensive data set of proteins to be identified from a B. subtilis endospore

    Similar works