This paper introduces a novel method for the efficient and accurate
computation of the volume of a domain whose boundary is given by an orientable
hypersurface which is implicitly given as the iso-contour of a sufficiently
smooth level-set function. After spatial discretization, local approximation of
the hypersurface and application of the Gaussian divergence theorem, the volume
integrals are transformed to surface integrals. Application of the surface
divergence theorem allows for a further reduction to line integrals which are
advantageous for numerical quadrature. We discuss the theoretical foundations
and provide details of the numerical algorithm. Finally, we present numerical
results for convex and non-convex hypersurfaces embedded in cuboidal domains,
showing both high accuracy and thrid- to fourth-order convergence in space.Comment: 25 pages, 17 figures, 3 table