We provide a computer-assisted proof that if G is any finite group of order
kp, where k < 48 and p is prime, then every connected Cayley graph on G is
hamiltonian (unless kp = 2). As part of the proof, it is verified that every
connected Cayley graph of order less than 48 is either hamiltonian connected or
hamiltonian laceable (or has valence less than three).Comment: 16 pages. GAP source code is available in the ancillary file