research

From synaptic interactions to collective dynamics in random neuronal networks models: critical role of eigenvectors and transient behavior

Abstract

The study of neuronal interactions is currently at the center of several neuroscience big collaborative projects (including the Human Connectome, the Blue Brain, the Brainome, etc.) which attempt to obtain a detailed map of the entire brain matrix. Under certain constraints, mathematical theory can advance predictions of the expected neural dynamics based solely on the statistical properties of such synaptic interaction matrix. This work explores the application of free random variables (FRV) to the study of large synaptic interaction matrices. Besides recovering in a straightforward way known results on eigenspectra of neural networks, we extend them to heavy-tailed distributions of interactions. More importantly, we derive analytically the behavior of eigenvector overlaps, which determine stability of the spectra. We observe that upon imposing the neuronal excitation/inhibition balance, although the eigenvalues remain unchanged, their stability dramatically decreases due to strong non-orthogonality of associated eigenvectors. It leads us to the conclusion that the understanding of the temporal evolution of asymmetric neural networks requires considering the entangled dynamics of both eigenvectors and eigenvalues, which might bear consequences for learning and memory processes in these models. Considering the success of FRV analysis in a wide variety of branches disciplines, we hope that the results presented here foster additional application of these ideas in the area of brain sciences.Comment: 24 pages + 4 pages of refs, 8 figure

    Similar works