Escape Rates of Externally Confined Polymers

Abstract

A polymer escaping from a confining external potential represents a generic description of long macromolecules crossing an energy barrier. This type of barrier crossing problems are typical in nano- and microscale polymeric systems, where the polymers are escaping from entropic traps by thermal fluctuations. These systems have possible bioengineering applications, where they can be for example used in sorting polymers. In this thesis, polymer escape from one- and two-dimensional external potentials was studied theoretically and computationally. In a two-dimensional asymmetric external potential, the escape rate of a polymer was solved using Path Integral Hyperdynamics (PIHD) simulations and Kramers' theory using effective potentials for different lengths of polymers. We found that Kramers' theory predicts the escape rate of PIHD simulations qualitatively but the prediction agrees quantitatively only for shorter chains. We also determined that a one-dimensional reaction coordinate is not sufficient to describe the dynamics of the longer polymer chains. In a one-dimensional symmetric double-well external potential, the escape rate was solved using Langevin dynamics simulations, Brownian dynamics simulations, harmonic transition state theory (HTST) with dynamical corrections (DC), Langer's theory, and Forward flux sampling (FFS). FFS and HTST with DC both predict the rate by Langevin and Brownian dynamics simulations quantitatively within a factor of two. We also introduced a new method for computing dynamical corrections using forward flux sampling type of algorithm and compared computational efficiency of the different methodsÍ líftækni er áhugi á kerfum þar sem stórum sameindum er haldið á takmörkuðu svæði með ytra mætti þar til þær sleppa út við það að yfirstíga fríorkuhól fyrir tilstilli varmafræðilegrar örvunar. Dæmi um slík kerfi eru nanó eða míkróskala entrópíugildrur sem notaðar eru til að aðgreina fjölliður. Í þessari ritgerð er lýst kennilegum rannsóknum og reikningum á sleppihraða fjölliða í tví- og þrívíðum kerfum. Sleppihraði fjölliða af ýmsum lengdum var reiknaður fyrir ósamhverft mættisfall með því að nota feriltegur háhreyfijöfnu (PIHD) og aðferð Kramers. Niðurstöður reikninganna voru í mjög góðu samræmi við beina reikninga fyrir stuttar fjölliður en ekki nema í grófu samræmi fyrir langar fjölliður. Þetta sýnir að einvíð hvarfstika nægir ekki til að lýsa færslu langra fjölliða. Sleppihraðinn fyrir samhverft mættisfall með tveimur orkubrunnum var reiknaður með ýmsum aðferðum, svo sem Langevin hreyfijöfnu, Brown hreyfijöfnu, virkjunarástandskenningu innan kjörsveifilsnálgunar (HTST) með leiðréttingu frá tímaferlum (DC) og áframflæði reikningum (FFS). FFS og HTST/DC aðferðirnar gefa báðar mat á sleppihraðanum í góðu samræmi við Langevin og Brown hreyfijöfnur. Ný aðferð til að reikna DC sem nýtir eiginleika FFS var sett fram og reikniþörfin borin saman við aðrar aðferðir.This work has been supported by the FiDiPro programme of the Academy of Finland and travel during this work by the Education Network in Condensed Matter and Materials Physics. Computational resources have been provided by Aalto Science-IT project and CSC - IT Center for Science. The MSP group is part of the Centre of Excellence in Computational Nanoscience (COMP) funded by the Academy of Finland

    Similar works