research

An objective assessment to investigate the impact of turning angle on freezing of gait in Parkinson's disease

Abstract

Freezing of gait (FoG) is often described in subjects with Parkinson's disease (PD) as a sudden inability to continue the forward walking progression. FoG occurs most often during turning, especially at sharp angles. Here, we investigated 180 and 360 degrees turns in two groups: PD subjects reporting FoG (FoG+), and PD subjects without FoG (FoG-). Forty-three subjects (25 FoG+, 18 FoG-) wore an inertial sensor on their back while walking back and forth continuously for 2 min (reversing direction with a 180° turn), and while turning in place for 1 min (alternating 360° turning in opposite directions). Objective measures (turn duration, peak velocity, jerkiness and range of acceleration) were computed during the turns and compared across FoG+ and FoG-groups. Results showed that FoG+ compared to FoG-took significantly a longer time to complete 360° turns than 180° turns. A significant lower turn peak velocity, higher jerkiness and an increased range of medio-lateral acceleration was also found in FoG+. Significant differences between the two groups across the two turning tasks validated the hypothesis that sharper turns might cause higher instability in FoG+ compared to FoG-

    Similar works