Recently, a novel chiral cubane-based Schiff base ligand was reported to yield modest enantioselectivity in the Henry reaction. To further explore the utility of this ligand in other asymmetric organic transformations, we evaluated its stereoselectivity in cyclopropanation and Michael addition reactions. Although there was no increase in stereocontrol, upon computational evaluation using both M06L and B3LYP calculations, it was revealed that a pseudo six-membered ring exists, through H-bonding of a cubyl hydrogen to the copper core. This decreases the steric bulk above the copper center and limits the asymmetric control with this ligand.The authors thank the Niagara University Academic Center for Integrated Science and the Rochester Academy of Science for their financial support. MLI would like to thank the Barbara S. Zimmer Memorial Research Award for financial aid. MLC gratefully acknowledges generous allocations of supercomputing time from the Australian National Computational Infrastructure, support from the Australian Research Council under its Centers of Excellence program, and an ARC Future Fellowship. RP would also like to thank Western New England University, College of Pharmacy for generous financial support