research

The ion velocity distribution function in a current-free double layer

Abstract

A portable, low-power, diode laser-based laser-induced fluorescence(LIF)diagnostic incorporating a heated iodine cell for absolute wavelength reference was installed on the Chi-Kung helicon source [K. K. Chi, T. E. Sheridan, and R. W. Boswell, Plasma Sources Sci. Technol.8, 421 (1999)] to measure the ion velocity distribution function of argon ions as they transited a current-free double layer (DL) created where the solenoidal magnetic field diverges at the junction of the plasma source and the diffusion chamber. Based on LIFmeasurements of the transiting ion beam energy, the strength of the potential drop across the DL increases with decreasing neutral pressure and increasing magnetic field strength in the source. The location of the double layer also moves further downstream of the helicon source with increasing pressure. LIFmeasurements of the ion beam energy were found to be in good agreement with measurements obtained with a retarding field energy analyzer and also with numerical predictions.This work was supported by NSF Grant PHY-0315356, and the NSF EAPSI program in cooperation with Australian Academy of Science. A.M.K. was also supported by the DOE Fusion Energy Science Fellowship program

    Similar works