Particle Markov Chain Monte Carlo (PMCMC) is a general approach to carry out
Bayesian inference in non-linear and non-Gaussian state space models. Our
article shows how to scale up PMCMC in terms of the number of observations and
parameters by expressing the target density of the PMCMC in terms of the basic
uniform or standard normal random numbers, instead of the particles, used in
the sequential Monte Carlo algorithm. Parameters that can be drawn efficiently
conditional on the particles are generated by particle Gibbs. All the other
parameters are drawn by conditioning on the basic uniform or standard normal
random variables; e.g. parameters that are highly correlated with the states,
or parameters whose generation is expensive when conditioning on the states.
The performance of this hybrid sampler is investigated empirically by applying
it to univariate and multivariate stochastic volatility models having both a
large number of parameters and a large number of latent states and shows that
it is much more efficient than competing PMCMC methods. We also show that the
proposed hybrid sampler is ergodic