thesis

The Strategic Behavior of Rational Novices

Abstract

There is a growing amount of experimental evidence that suggests people often deviate from the predictions of game theory. Some scholars attempt to explain the observations by introducing errors into behavioral models. However, most of these modifications are situation dependent and do not generalize. A new theory, called the rational novice model, is introduced as an attempt to provide a general theory that takes account of erroneous behavior. The rational novice model is based on two central principals. The first is that people systematically make inaccurate guesses when they are evaluating their options in a game-like situation. The second is that people treat their decisions similar to a portfolio problem. As a result, non optimal actions in a game theoretic sense may be included in the rational novice strategy profile with positive weights. The rational novice model can be divided into two parts: the behavioral model and the equilibrium concept. In a theoretical chapter, the mathematics of the behavioral model and the equilibrium concept are introduced. The existence of the equilibrium is established. In addition, the Nash equilibrium is shown to be a special case of the rational novice equilibrium. In another chapter, the rational novice model is applied to a voluntary contribution game. Numerical methods were used to obtain the solution. The model is estimated with data obtained from the Palfrey and Prisbrey experimental study of the voluntary contribution game. It is found that the rational novice model explains the data better than the Nash model. Although a formal statistical test was not used, pseudo R^2 analysis indicates that the rational novice model is better than a Probit model similar to the one used in the Palfrey and Prisbrey study. The rational novice model is also applied to a first price sealed bid auction. Again, computing techniques were used to obtain a numerical solution. The data obtained from the Chen and Plott study were used to estimate the model. The rational novice model outperforms the CRRAM, the primary Nash model studied in the Chen and Plott study. However, the rational novice model is not the best amongst all models. A sophisticated rule-of-thumb, called the SOPAM, offers the best explanation of the data.</p

    Similar works