unknown

Program to Optimize Simulated Trajectories II (POST2) Surrogate Models for Mars Ascent Vehicle (MAV) Performance Assessment

Abstract

The primary purpose of the multiPOST tool is to enable the execution of much larger sets of vehicle cases to allow for broader trade space exploration. However, this exploration is not achieved solely with the increased case throughput. The multiPOST tool is applied to carry out a Design of Experiments (DOE), which is a set of cases that have been structured to capture a maximum amount of information about the design space with minimal computational effort. The results of the DOE are then used to fit a surrogate model, ultimately enabling parametric design space exploration. The approach used for the MAV study includes both DOE and surrogate modeling. First, the primary design considerations for the vehicle were used to develop the variables and ranges for the multiPOST DOE. The final set of DOE variables were carefully selected in order to capture the desired vehicle trades and take into account any special considerations for surrogate modeling. Next, the DOE sets were executed through multiPOST. Following successful completion of the DOE cases, a manual verification trial was performed. The trial involved randomly selecting cases from the DOE set and running them by hand. The results from the human analyst's run and multiPOST were then compared to ensure that the automated runs were being executed properly. Completion of the verification trials was then followed by surrogate model fitting. After fits to the multiPOST data were successfully created, the surrogate models were used as a stand-in for POST2 to carry out the desired MAV trades. Using the surrogate models in lieu of POST2 allowed for visualization of vehicle sensitivities to the input variables as well as rapid evaluation of vehicle performance. Although the models introduce some error into the output of the trade study, they were very effective at identifying areas of interest within the trade space for further refinement by human analysts. The next section will cover all of the ground rules and assumptions associated with DOE setup and multiPOST execution. Section 3.1 gives the final DOE variables and ranges, while section 3.2 addresses the POST2 specific assumptions. The results of the verification trials are given in section 4. Section 5 gives the surrogate model fitting results, including the goodness-of-fit metrics for each fit. Finally, the MAV specific results are discussed in section 6

    Similar works