CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Visual Exploration and Cohort Identification of Acute Patient Histories Aggregated from Heterogeneous Sources
Authors
Stein Jakob Nordbø
Øystein Nytrø
Aslak Steinsbekk
Rune Sætre
Publication date
1 January 2016
Publisher
IEEE
Abstract
How can we use information visualization to support retrospective, exploratory analysis of collections of histories for patients admitted to acute care? This paper describes a novel design for visual cohort identification and exploration. We have developed a tool that integrates multiple, heterogeneous clinical data sources and allows alignment, querying and abstraction in a common workbench. This paper presents results from two projects and a review of related work in the field of information visualization including both presentation and interactive navigation of the information. We have developed an interactive prototype and present the visualization aspect of this prototype and a brief demonstration of its use in a research project with a large cohort of patients. The prototype represents and reasons with patient events in different OWL-formalizations according to the perspective and use: One for integration and alignment of patient records and observations; Another for visual presentation of individual or cohort trajectories. Health researchers have successfully analyzed large cohorts (over 100,000 individuals) using the tool. We have also used the tool to produce interactive personal health time-lines (for more than 10,000 individuals) on the web. Utility, usability and effect have been tested extensively and the results so far are promising. We envision that clinicians who want to learn more about groups of patients and their treatment processes will find the tool valuable. In addition, we believe that the visualization can be useful to researchers looking at data to be statistically evaluated, in order to discover new hypotheses or get ideas for the best analysis strategies. Our main conclusion is that the tool is usable, but it can be challenging to use for large data sets.Postprint version. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
NORA - Norwegian Open Research Archives
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ntnuopen.ntnu.no:11250/239...
Last time updated on 14/10/2021
HSN Open Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:brage.bibsys.no:11250/2393...
Last time updated on 14/04/2018