An investigation of energy flow through coupled plate structures

Abstract

This PhD thesis presents research aims to improving the dynamic modelling of coupled plate structures across a wide frequency range by using analytical, statistical and experimental methods. The analytical waveguide method is used to model the flexural displacement of coupled plate structures which are simply supported along two parallel edges. A method of quickly predicting the average energy level in a plate from details of the waveguide model is described, and used for comparison with SEA models. The Poynting and Impedance methods of predicting the energy flow in coupled plate structures are investigated. Transmission coefficients for coupled plate structures are evaluated using the analytical waveguide method for both semi-infinite and finite coupled plate structures. Finite transmission coefficients have traditionally been more difficult to evaluate due to the presence of a reverberant field, but in this work a novel method of separating the reverberant field using a scattering matrix method is presented. The transmission coefficients for semi-infinite and finite structures are then compared for L-shaped plates. A modal transmission coefficient is also defined and for the cases considered, and is used to develop an alternative method of deriving the transmission coefficient in a finite structure. Frequency averaged transmission coefficients are also considered, and the transmission coefficients derived for finite and semi-infinite structures are found to be very similar after frequency averaging. Statistical Energy Analysis models of coupled plates are evaluated using transmission coefficients derived from waveguide models. The results of the SEA models are compared to those predicted by the analytical waveguide method. A modal transmission coefficient based SEA model is also investigated. In an attempt to validate the numerical work presented in this thesis, experiments have been conducted. Using a wave extraction technique, both the wave amplitudes and plate properties have been evaluated from experimental data, and are subsequently used to experimentally measure the transmission coefficient for two plates coupled at different angles

    Similar works

    Full text

    thumbnail-image

    Available Versions