CB1 Cannabinoid Receptor Expression in the Barrel Field Region Is Associated with Mouse Learning

Abstract

We found previously that fear conditioning by combined stimulation of a row B facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) leads to expansion of the cortical representation of the “trained” row, labeled with 2-deoxyglucose (2DG), in the layer IIIb/IV of the adult mouse the primary somatosensory cortex (S1) 24 h later. We have observed that these learning-dependent plastic changes are manifested by increased expression of somatostatin, cholecystokinin (SST+, CCK+) but not parvalbumin (PV+) immunopositive interneurons We have expanded this research and quantified a numerical value of CB1-expressing and PV-expressing GABAergic axon terminals (CB1+ and PV+ immunopositive puncta) that innervate different segments of postsynaptic cells in the barrel hollows of S1 cortex. We used 3D microscopy to identify the CB+ and PV+ puncta in the barrel cortex “trained” and the control hemispheres CS+UCS group and in controls: Pseudoconditioned, CS-only, UCS-only, and naive animals. We have identified that (i) the association between whisker-shock “trained” barrel B hollows and CB1+, but not PV+ puncta expression remained significant after Bonferroni correction, (ii) CS+UCS has had a significant increasing effect on expression of CB1+ but not PV+ puncta in barrel cortex “trained” hemisphere, and (iii) the pseudoconditioning had a significant decreasing effect on expression of CB1+, but not on PV+ puncta in barrel cortex, both trained and untrained hemispheres. It is correlated to disturbing behaviors. The results suggest that CB1+ puncta regulation is specifically linked with mechanisms leading to learning-dependent plasticity in S1 cortex

    Similar works

    Full text

    thumbnail-image

    Available Versions